(9x+4)+(x^2+11)+(2x^2+2x-3)=180

Simple and best practice solution for (9x+4)+(x^2+11)+(2x^2+2x-3)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9x+4)+(x^2+11)+(2x^2+2x-3)=180 equation:



(9x+4)+(x^2+11)+(2x^2+2x-3)=180
We move all terms to the left:
(9x+4)+(x^2+11)+(2x^2+2x-3)-(180)=0
We get rid of parentheses
x^2+2x^2+9x+2x+4+11-3-180=0
We add all the numbers together, and all the variables
3x^2+11x-168=0
a = 3; b = 11; c = -168;
Δ = b2-4ac
Δ = 112-4·3·(-168)
Δ = 2137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{2137}}{2*3}=\frac{-11-\sqrt{2137}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{2137}}{2*3}=\frac{-11+\sqrt{2137}}{6} $

See similar equations:

| 5-2(x+3)=-2x-7 | | x-4=(-2) | | m2+6m-16=0 | | 63+4x+3=16x-12 | | (3x+5)=(5x+15) | | 4m+12=m+9 | | 2.43(x)=1383 | | 31(32-11n)-19(8-18n)=-6n+6n | | 2(2x+1)=2x-10 | | (x^-4)(x-4x)=0 | | (x2-4)(x-4x)=0 | | 2/5t=20 | | 3(x+6)-5(x-1)=29 | | 6(n+2)=4n+4 | | 3x+6+-5x+-5=29 | | 18+3*3√x=30 | | X+x-88=90 | | 14x-25+51=90 | | X+x-86=180 | | 180=x+8x | | (3x+4)-3+4x=0 | | 4(n-2)=2n-2 | | 4n-2)=2n-2 | | 6t-8=2(2t+10 | | 5(n+2)=3n+18 | | 3x-4=15(x-1) | | x/24=25 | | 6t-8=4t+1 | | 8x=4+16 | | 7x-44+75+63=90 | | 3x+8=2×+21 | | 4u-10=20u-24-2u |

Equations solver categories